DELAYED DEDIFFERENTIATION AND RETENTION OF PROPERTIES IN DISSOCIATED ADULT SKELETAL MUSCLE FIBERS IN VITRO

Author(s):  
L. D. BROWN ◽  
M. F. SCHNEIDER
2019 ◽  
Vol 116 (31) ◽  
pp. 15716-15724 ◽  
Author(s):  
Daniela Rossi ◽  
Angela Maria Scarcella ◽  
Enea Liguori ◽  
Stefania Lorenzini ◽  
Enrico Pierantozzi ◽  
...  

In adult skeletal muscles, 2 junctophilin isoforms (JPH1 and JPH2) tether the sarcoplasmic reticulum (SR) to transverse tubule (T-tubule) membranes, generating stable membrane contact sites known as triads. JPHs are anchored to the membrane of the SR by a C-terminal transmembrane domain (TMD) and bind the T-tubule membrane through their cytosolic N-terminal region, which contains 8 lipid-binding (MORN) motifs. By combining expression of GFP-JPH1 deletion mutants in skeletal muscle fibers with in vitro biochemical experiments, we investigated the molecular determinants of JPH1 recruitment at triads in adult skeletal muscle fibers. We found that MORN motifs bind PI(4,5)P2 in the sarcolemma, but do not mediate the selective localization of JPH1 at the T-tubule compartment of triads. On the contrary, fusion proteins containing only the TMD of JPH1 were able to localize at the junctional SR compartment of the triad. Bimolecular fluorescence complementation experiments indicated that the TMD of JPH1 can form dimers, suggesting that the observed localization at triads may result from dimerization with the TMDs of resident JPH1. A second domain, capable of mediating homo- and heterodimeric interactions between JPH1 and JPH2 was identified in the cytosolic region. FRAP experiments revealed that removal of either one of these 2 domains in JPH1 decreases the association of the resulting mutant proteins with triads. Altogether, these results suggest that the ability to establish homo- and heterodimeric interactions with resident JPHs may support the recruitment and stability of newly synthesized JPHs at triads in adult skeletal muscle fibers.


1985 ◽  
Vol 59 (1) ◽  
pp. 119-126 ◽  
Author(s):  
K. K. McCully ◽  
J. A. Faulkner

We tested the hypothesis that lengthening contractions result in greater injury to skeletal muscle fibers than isometric or shortening contractions. Mice were anesthetized with pentobarbital sodium and secured to a platform maintained at 37 degrees C. The distal tendon of the extensor digitorum longus muscle was attached to a servomotor. A protocol consisting of isometric, shortening, or lengthening contractions was performed. After the contraction protocol the distal tendon was reattached, incisions were closed, and the mice were allowed to recover. The muscles were removed after 1–30 days, and maximum isometric force (Po) was measured in vitro at 37 degrees C. Three days after isometric and shortening contractions and sham operations, histological appearance was not different from control and Po was 80% of the control value. Three days after lengthening contractions, histological sections showed that 37 +/- 4% of muscle fibers degenerated and Po was 22 +/- 3% of the control value. Muscle regeneration, first seen at 4 days, was nearly complete by 30 days, when Po was 84 +/- 3% of the control value. We conclude that, with the protocol used, lengthening, but not isometric or shortening contractions, caused significant injury to muscle fibers.


1996 ◽  
Vol 199 (11) ◽  
pp. 2359-2367
Author(s):  
C Brösamle ◽  
D P Kuffler

The vertebrate neuromuscular junction is a highly specialized structure containing many unique proteins and an underlying cluster of nuclei. Part of this specialization results from the expression of the genes for these proteins in nuclei clustered in the postsynaptic region. Contractile activity, as well as molecules located in the synaptic extracellular matrix (ECM), have been implicated in the induction of gene expression in these clustered nuclei. The present experiments were aimed at examining whether the presence of the synaptic ECM and presynaptic cells play a role in maintaining the clustering of the nuclei. We describe the normal distribution of nuclei clustered in the synaptic region of intact adult frog, Rana pipiens, skeletal muscle fibers and show that innervation is not required to maintain the nuclear clusters. Even after long-term (4 week) denervation, the clusters remain unchanged. Dissociation of the muscle fibers with proteases that remove ECM, Schwann cells and other satellite cells from the synaptic sites is followed by a rapid (within approximately 1.5 h) and almost complete dispersal of the clustered nuclei. Attempts to recluster the postsynaptic nuclei by the application of ECM components to muscle fibers in vitro were not successful. We propose that a factor or factors, localized in the synaptic ECM as a result of synapse formation and acting via the transmembrane or cytoplasmic domains of their respective receptors, induces the formation of a specialized cytoskeleton in the postsynaptic region that is capable of pulling in or 'trapping' nuclei. The removal of these factors from the ECM by proteases brings about the disorganization of the cytoskeleton and the freeing of the 'trapped' nuclei.


2001 ◽  
Vol 155 (1) ◽  
pp. 27-40 ◽  
Author(s):  
Yewei Liu ◽  
Zoltán Cseresnyés ◽  
William R. Randall ◽  
Martin F. Schneider

TTranscription factor nuclear factor of activated T cells NFATc (NFATc1, NFAT2) may contribute to slow-twitch skeletal muscle fiber type–specific gene expression. Green fluorescence protein (GFP) or FLAG fusion proteins of either wild-type or constitutively active mutant NFATc [NFATc(S→A)] were expressed in cultured adult mouse skeletal muscle fibers from flexor digitorum brevis (predominantly fast-twitch). Unstimulated fibers expressing NFATc(S→A) exhibited a distinct intranuclear pattern of NFATc foci. In unstimulated fibers expressing NFATc–GFP, fluorescence was localized at the sarcomeric z-lines and absent from nuclei. Electrical stimulation using activity patterns typical of slow-twitch muscle, either continuously at 10 Hz or in 5-s trains at 10 Hz every 50 s, caused cyclosporin A–sensitive appearance of fluorescent foci of NFATc–GFP in all nuclei. Fluorescence of nuclear foci increased during the first hour of stimulation and then remained constant during a second hour of stimulation. Kinase inhibitors and ionomycin caused appearance of nuclear foci of NFATc–GFP without electrical stimulation. Nuclear translocation of NFATc–GFP did not occur with either continuous 1 Hz stimulation or with the fast-twitch fiber activity pattern of 0.1-s trains at 50 Hz every 50 s. The stimulation pattern–dependent nuclear translocation of NFATc demonstrated here could thus contribute to fast-twitch to slow-twitch fiber type transformation.


2021 ◽  
Vol 53 (8S) ◽  
pp. 110-111
Author(s):  
Austin W. Ricci ◽  
Scott J. Mongold ◽  
Grace E. Privett ◽  
Karen W. Needham ◽  
Damien M. Callahan

2006 ◽  
Vol 17 (4) ◽  
pp. 1570-1582 ◽  
Author(s):  
Tiansheng Shen ◽  
Yewei Liu ◽  
Zoltán Cseresnyés ◽  
Arie Hawkins ◽  
William R. Randall ◽  
...  

The transcription factor NFATc1 may be involved in slow skeletal muscle gene expression. NFATc1 translocates from cytoplasm to nuclei during slow fiber type electrical stimulation of skeletal muscle fibers because of activation of the Ca2+-dependent phosphatase calcineurin, resulting in nuclear factor of activated T-cells (NFAT) dephosphorylation and consequent exposure of its nuclear localization signal. Here, we find that unstimulated adult skeletal muscle fibers exhibit a previously unanticipated nucleocytoplasmic shuttling of NFATc1 without appreciable nuclear accumulation. In resting fibers, the nuclear export inhibitor leptomycin B caused nuclear accumulation of NFATc1 (but not of isoform NFATc3) and formation of NFATc1 intranuclear bodies independent of calcineurin. The rate of nuclear uptake of NFATc1 was 4.6 times lower in resting fibers exposed to leptomycin B than during electrical stimulation. Inhibitors of glycogen synthase kinase and protein kinase A or of casein kinase 1 slowed the decay of nuclear NFATc1 after electrical stimulation, but they did not cause NFATc1 nuclear uptake in unstimulated fibers. We propose that two nuclear translocation pathways, one pathway mediated by calcineurin activation and NFAT dephosphorylation and the other pathway independent of calcineurin and possibly independent of NFAT dephosphorylation, determine the distribution of NFATc1 between cytoplasm and nuclei in adult skeletal muscle.


1991 ◽  
Vol 115 (3) ◽  
pp. 765-778 ◽  
Author(s):  
M T Lupa ◽  
J H Caldwell

We used the loose patch voltage clamp technique and rhodamine-conjugated alpha-bungarotoxin to study the regulation of Na channel (NaCh) and acetylcholine receptor (AChR) distribution on dissociated adult skeletal muscle fibers in culture. The aggregate of AChRs and NaChs normally found in the postsynaptic membrane of these cells gradually fragmented and dispersed from the synaptic region after several days in culture. This dispersal was the result of the collagenase treatment used to dissociate the cells, suggesting that a factor associated with the extracellular matrix was responsible for maintaining the high concentration of AchRs and NaChs at the neuromuscular junction. We tested whether the basal lamina protein agrin, which has been shown to induce the aggregation of AChRs on embryonic myotubes, could similarly influence the distribution of NaChs. By following identified fibers, we found that agrin accelerated both the fragmentation of the endplate AChR cluster into smaller patches as well as the appearance of new AChR clusters away from the endplate. AChR patches which were fragments of the original endplate retained a high density of NaChs, but no new NaCh hotspots were found elsewhere on the fiber, including sites of newly formed AChR clusters. The results are consistent with the hypothesis that extracellular signals regulate the distribution of AChRs and NaChs on skeletal muscle fibers. While agrin probably serves this function for the AChR, it does not appear to play a role in the regulation of the NaCh distribution.


Sign in / Sign up

Export Citation Format

Share Document